1. A possible explanation for the differences in structure, function, and behavior between chimpanzees and humans is provided by the
 (1) heterotroph hypothesis (3) cell theory
 (2) lock-and-key model (4) theory of evolution

2. Possible explanations for the origin of diversities in structure, function, and behavior among organisms are contained in the
 (1) cell theory (3) fluid-mosaic model
 (2) theory of evolution (4) gene-chromosome theory

3. Which area of biology compares and attempts to explain the structural changes that have taken place in living things over millions of years, as well as those changes occurring today?
 (1) classification (2) reproduction (3) physiology (4) evolution

4. Many scientists believe that the earliest cells on Earth were relatively simple, lacking nuclear membranes and other organized cellular structures. Over time, more complex cells developed from these simple cells.

 These statements describe the concept of
 (1) inheritance of acquired characteristics (3) dominance
 (2) evolution (4) use and disuse

5. The term "evolution" is best described as
 (1) a process of change in a population through time
 (2) a process by which organisms become extinct
 (3) the reproductive isolation of members of certain species
 (4) the replacement of one community by another

6. Which statement best supports the inference that the ancestors of modern day elephants had no trunks or tusks and were the size of pigs?
 (1) Population size tends to remain stable from generation to generation.
 (2) Evolutionary change is always rapid and continuous.
 (3) Existing life forms have evolved from earlier life forms.
 (4) Geographic isolation rarely favors speciation in small populations.

7. The changes in foot structure in a bird population over many generations are shown in the diagram below.

 These changes can best be explained by the concept of
 (1) evolution (2) extinction (3) stable gene frequencies (4) use and disuse